ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего образования «Петербургский государственный университет путей сообщения Императора Александра I» (ФГБОУ ВО ПГУПС)

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО МАТЕМАТИКЕ

для поступления на обучение по программам бакалавриата и программам специалитета

Форма обучения – очная, заочная

1. Обшие положения

Программа вступительных испытаний по математике, проводимых ФГБОУ ВО ПГУПС самостоятельно, составлена в соответствии с приказом Министерства науки и высшего образования РФ от 21.08.2020 г. № 1076 «Об утверждении порядка приема на обучение по образовательным программам высшего образования - программам бакалавриата, программам специалитета, программам магистратуры»

Программа вступительных испытаний по математике соответствует правилам приёма в Петербургский государственный университет путей сообщения Императора Александра I для поступающих на обучение по программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры на 2023/2024 учебный год.

Программа вступительных испытаний по математике составлена на основе программы средней общеобразовательной школы и соответствует обязательному минимуму содержания среднего (полного) общего образования, а также программе вступительных испытаний в высшие учебные заведения Российской Федерации, опубликованной на сайте Министерства науки и высшего образования РФ.

2. Требования к уровню подготовки поступающих

К вступительному экзамену по общеобразовательному предмету «Математика» допускаются лица, имеющие среднее общее образование и (или) среднее профессиональное образование, подтверждённое документально, подавшие заявление о приёме в Петербургский государственный университет путей сообщения Императора Александра I и имеющие право сдачи вступительного испытания в соответствии с действующими правилами приёма на обучение по результатам вступительных испытаний, проводимых ФГБОУ ВО ПГУПС самостоятельно.

3. Цели и задачи вступительных испытаний

В результате освоения основной образовательной программы среднего общего образования абитуриент должен:

Знать и понимать:

- применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.
- использование приобретенных знаний и умений для построения и исследования простейших математических моделей для решения геометрических, физических, экономических и других прикладных задач в практической деятельности и повседневной жизни;

Уметь:

• определять значение функции по значению аргумента при различных способах задания функции;

- исследовать функции и строить графики изученных функций, выполнять преобразования графиков;
- описывать по графику и по формуле поведение и свойства функций;
- решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;
- решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;
- вычислять отношения, расстояния и углы в треугольниках и многоугольниках;
- строить сечения многогранников и изображать сечения тел вращения;
- вычислять линейные элементы и углы в пространственных конфигурациях, объемы и площади поверхностей пространственных тел и их простейших комбинаций;
- применять координатно-векторный метод для вычисления отношений, расстояний и углов.

Владеть:

- базовым понятийным аппаратом алгебры, геометрии, тригонометрии, основ математического анализа.
- умениями применения полученных знаний в повседневной жизни прогнозирования последствий принимаемых решений.

4. Форма и процедура вступительных испытаний

В соответствии с Регламентом проведения вступительных испытаний для поступающих образовательным обучение программам программам образования программам бакалавриата, специалитета, 2023/2024 учебный программам магистратуры на год, вступительные испытания для поступающих на обучение по программам бакалавриата и специалитета могут проводиться как очно так и дистанционно.

Целью вступительных испытаний является проверка уровня подготовки абитуриентов, оценка результатов освоения ими основной образовательной программы среднего общего образования по дисциплине «Математика».

Экзамен по математике проводится в письменной форме. На выполнение работы отводится 90 минут. Экзаменационная работа состоит из 22 заданий, разбитых на части A, B и C.

<u>Часть А</u>. Задачи A1–A14 считаются решенными, если на бланке ответов записан правильный ответ в виде целого числа или числа, записанного в виде конечной десятичной дроби. Каждая задача A1–A14 оценивается 2 баллами.

<u>Часть В.</u> Задачи В1–В6 считаются решенными, если на бланк ответов содержит краткое правильное решение. Каждая задача оценивается 7 баллами.

<u>Часть С.</u> Задачи С1–С2 считаются решенными, если на бланке ответов приведена полная запись решения. Подробное решение этих задач с обоснованием каждого этапа оценивается 15 баллами.

5. Содержание программы вступительных испытаний

Делимость целых чисел. Деление с остатком. Многочлены от одной переменной. Делимость многочленов. Деление многочленов с остатком. Рациональные корни многочленов с целыми коэффициентами. Схема Горнера. Теорема Безу. Число корней многочлена. Формулы сокращенного умножения.

Корень степени n>1 и его свойства. Степень с рациональным показателем и ее свойства.

Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число e.

Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера Основные косинус, тангенс И котангенс числа. тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических произведение произведения Выражение И сумму. тригонометрических через аргумента. функций тангенс половинного Преобразования тригонометрических выражений. Арксинус, арккосинус, арктангенс, арккотангенс числа.

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства нечетность, функций: монотонность, четность И периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее наименьшее значения, точки экстремума. Сложная функция (композиция функций). Взаимно обратные функции. Область определения и область значений обратной функции. График обратной функции. Степенная функция с натуральным показателем, ее свойства и график. Тригонометрические функции, их свойства и графики, периодичность. Обратные тригонометрические функции, их свойства и графики. Показательная функция (экспонента), ее свойства и график. Логарифмическая функция, ее свойства и график. Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.

Решение рациональных, показательных, иррациональных, логарифмических, тригонометрических уравнений и неравенств.

Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение систем уравнений с двумя неизвестными (простейшие типы). Решение систем неравенств с одной переменной. Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Геометрия на плоскости. Свойство биссектрисы угла треугольника. Решение треугольников. Вычисление биссектрис, медиан, высот, радиусов вписанной и описанной окружностей. Формулы площади треугольника:

формула Герона, выражение площади треугольника через радиус вписанной и описанной окружностей.

Вычисление углов с вершиной внутри и вне круга, угла между хордой и касательной. Теорема о произведении отрезков хорд. Теорема о касательной и секущей. Теорема о сумме квадратов сторон и диагоналей параллелограмма

Вписанные и описанные многоугольники. Свойства и признаки вписанных и описанных четырехугольников.

Прямые и плоскости в пространстве. Формулы объема куба, параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости. Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы.

6. Шкала оценивания и минимальное количество баллов, подтверждающее успешное прохождение вступительных испытаний

Вступительные испытания оцениваются по 100-балльной системе оценивания

Вид задания	Максимальное количество баллов	Примечание
Задания с выбором варианта ответа A1-A14	28	2 балла за каждый правильный ответ
Задачи В1-В6	42	7 баллов за каждый правильный ответ
Задачи С1 и С2	30	15 баллов за правильный ответ и полное решение задачи*
Итого	100	

* Полное решение задачи С1 и задачи С2 должно содержать:

- поясняющий рисунок, если он необходим для решения задачи;
- необходимые математические преобразования, приводящие к получению решения в общем виде (рабочей формулы);
- подстановку численных величин в рабочую формулу и проверку размерности результата вычислений;
- запись ответа с указанием размерности.

При отсутствие решения задачи C1 или C2 задание не оценивается даже при наличии правильного ответа.

Минимальное количество баллов, подтверждающее успешное прохождение вступительных испытаний – 36 баллов.

По результатам вступительного испытания, проводимого ПГУПС самостоятельно, поступающий имеет право подать апелляцию о нарушении, по мнению поступающего, установленного порядка проведения вступительного испытания и (или) о несогласии с полученной оценкой результатов вступительного испытания. Правила подачи и рассмотрения апелляций устанавливаются ФГБОУ ВО ПГУПС.

7. Рекомендуемая литература

- 1. Алимов Ш. А. Алгебра и начала математического анализа. 10–11 классы: учебник для общеобразовательных организаций: базовый уровень / Ш. А.Алимов, Ю. М.Колягин, М. В. Ткачева и др. 20-е изд. М.: Просвещение, 2014. 463 с.
- 2. Атанасян Л. С. Геометрия. 10–11 классы: учебник для общеобразовательных учреждений: базовый и профил. уровни / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. 18-е изд. M.: Просвещение, 2009. 255 с.
- 3. Башмаков М. И. Математика: алгебра и начала анализа, геометрия: учеб. для студ. учреждений сред. проф. образования / М. И. Башмаков. 3-е изд. стер. М.: Издательский центр «Академия», 2017. 256 с.
- 4. Башмаков М. И. Математика. Задачник: учеб. пособие для образоват. учреждений нач. и сред. проф. образования / М. И. Башмаков. 3-е изд. стер. М.: Издательский центр «Академия», 2013. 416 с.
- 5. Гарбарук В. В. Решение задач по математике. Адаптивный курс для студентов технических вузов: учебное пособие / В. В. Гарбарук, В. И. Родин, И. М. Соловьева, М. А. Шварц. СПб. : Лань, 2017.-688 с.
- 6. Рязановский А. Р. Алгебра и начала анализа: 500 способов и методов решения задач по математике для школьников и поступающих в вузы / А. Р. Рязановский. М.: Дрофа, 2001.-480 с.